메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김진수 (제주대학교) 박남제 (제주대학교)
저널정보
한국정보보호학회 정보보호학회논문지 정보보호학회논문지 제32권 제1호
발행연도
2022.2
수록면
99 - 107 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
다양한 기술들이 하나로 융합되어 새로운 기술로 변화되고 있는 현재의 기술사회에서 사회의 변화에 발맞추듯 새로운 사이버공격들이 만들어지고 있다. 특히, 다양한 공격들이 하나로 융합됨으로 인해 기존의 보안 체계만으로 시스템을 보호하는데 어려움이 발생하고 있다. 이와 같은 사이버공격에 대응하기 위해 많은 정보가 생성되고 있다. 하지만, 무분별하게 발생하는 취약점 정보는 관리자에게 불필요한 정보를 제공하여 혼란을 유도할 수 있다. 따라서 본 논문에서는 딥러닝 기반의 언어 학습 모델을 이용하여 문서를 학습하고, 취약점 정보를 추출하여 MITRE ATT&CK 프레임워크에 따라 분류함으로써 관리자에게 구분화된 취약점 정보를 제공하여 새로이 발생하고 있는 사이버공격 융합 기술의 분석을 보조하는 메커니즘을 제안한다.

목차

요약
ABSTRACT
I. 서론
II. 관련 연구 동향 분석
III. 제안 메커니즘
IV. 제안 메커니즘 결과 분석
V. 결론
References

참고문헌 (29)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-004-001090448