메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
강상익 (kt) 조경일 (kt) 금명철 (kt) 서경천 (울산대학교) 박윤길 (연세대학교) 박진영 (연세대학교) 차은실 (연세대학교) 정석영 (연세대학교) 이주강 (가천대 길병원) 유제현 (가천대 길병원) 최경효 (울산대학교 서울아산병원)
저널정보
한국재활복지공학회 재활복지공학회논문지 재활복지공학회논문지 제16권 제1호
발행연도
2022.2
수록면
13 - 18 (6page)
DOI
10.21288/resko.2022.16.1.13

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 autoencoder를 이용하여 음성 기반의 연하장애 검출 방법을 제시한다. 기존의 음성을 이용한 물 삼킴 검사(water swallowing test)는 손쉽게 연하장애를 검할 수 있는 방법이지만 낮은 정확도로 인한 문제점을 가지고 있다. 높은 성능의 음성 기반의 연하장애 판단을 위해 기계 학습 기반의 음성 분석 방법을 제안한다. 구체적으로, 연하장애를 검진하는 대표적인 방법인 VFSS(Video Fluoroscopic Swallowing Study) 검사 전, 후의 /a/ 음성 데이터를 기반으로 비정상 탐지에 강인한 성능을 보이는 autoencoder를 이용하여 연하장애를 판단한다. 학습을 위해 33명의 정상인 데이터를 사용하였고 정상인 16명, 연하장애 환자 39명을 대상으로 기존의 Praat을 이용한 방법보다 23%p 검출 성능을 향상을 보였다.

목차

요약
ABSTRACT
1. 서론
2. 이상 탐지를 위한 Autoencoder
3. 실험 환경 및 결과
4. 결론
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-512-001098145