메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Xin Wang (Virginia Commonwealth University) Wei Zhang (University of Louisville)
저널정보
Korean Institute of Information Scientists and Engineers Journal of Computing Science and Engineering Journal of Computing Science and Engineering Vol.15 No.4
발행연도
2021.12
수록면
135 - 147 (13page)
DOI
10.5626/JCSE.2021.15.4.135

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
In this paper, we study the use of an Operand-Width-Aware Register (OWAR) packing mechanism for graphics processing unit (GPU) energy saving. In order to efficiently use the GPU register file (RF), OWAR employs a power gating method to shut down unused register sub-arrays in order to reduce dynamic and leakage energy consumption of RF. As the number of register accesses was reduced due to the packing of the narrow width operands, the dynamic energy dissipation was further decreased. Finally, with the help of RF usage optimized by register packing, OWAR allowed GPUs to support more thread-level parallelism (TLP) through assigning additional thread blocks on streaming multiprocessors (SMs) for general-purpose GPU (GPGPU) applications that suffered from the deficiency of register resources. The extra TLP opens opportunities for hiding more memory latencies and thus reducing the overall execution time, which can lower the overall energy consumption. We evaluated OWAR using a set of representative GPU benchmarks. The experimental results showed that compared to the baseline without optimization, OWAR can reduce the GPGPU’s total energy up to 29.6% and 9.5% on average. In addition, OWAR achieved performance improvement up to 1.97X and 1.18X on average.

목차

Abstract
I. INTRODUCTION
II. BACKGROUND OVERVIEW
III. MOTIVATION
IV. OPERAND-WIDTH-AWARE REGISTER PACKING MECHANISM
V. METHODOLOGY AND HARDWARE DETAILS
VI. EXPERIMENTAL RESULTS
VII. RELATED WORK
VIII. CONCLUSION
REFERENCES

참고문헌 (33)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0