메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
고강욱 (한국과학기술원) 심규진 (한국과학기술원) 변준영 (한국과학기술원) 김창익 (한국과학기술원)
저널정보
대한전자공학회 대한전자공학회 학술대회 2021년도 대한전자공학회 추계학술대회 논문집
발행연도
2021.11
수록면
340 - 344 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Convolutional Neural Networks have achieved state-of-the-art performance in various computer vision tasks. A number of methods have been proposed to resolve the overfitting issue of CNN and enhance its generalization ability. One main reason for overfitting and poor generalization ability is that the kernels of CNN are correlated with each other. In this paper, we devise an additional loss term that takes distance or similarity metric between kernels into account. With this newly proposed loss term, we propose an easy way to enhance the performance of CNN by changing the loss function only. We verify by experiments that our proposed loss term that employs Euclidean distance as a distance metric can improve the performance of various networks on various datasets.

목차

Abstract
Ⅰ. 서론
Ⅱ. 본론
Ⅲ. 실험
Ⅳ. 결론 및 향후 연구 방향
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0