메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Soojung Lee (Gyeongin National University of Education)
저널정보
한국컴퓨터정보학회 한국컴퓨터정보학회논문지 한국컴퓨터정보학회 논문지 제27권 제1호(통권 제214호)
발행연도
2022.1
수록면
83 - 89 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
협력 필터링은 추천 시스템의 대표적인 기법으로서 많은 상업 및 학계 시스템에서 성공적으로 구현되어 서비스되고 있다. 이 기법은 두 사용자 간의 공통 평가 항목에 대한 평가치의 유사성을 기반으로 유사한 이웃 사용자들이 높은 평가치를 부여한 항목들을 추천한다. 최근 사용자들의 항목 평가 시각을 반영하여 시스템 성능을 향상시키려는 시각 인지 추천 시스템 연구가 진행되고 있다. 그러나, 과거 평가치에 대한 일률적인 감쇠율은 시스템의 평가치 예측 성능을 저하시킬 우려가 있다. 본 연구에서는 기존과 다른 접근 방식으로서 평가 시각 인지 기반의 사용자 간 유사도 척도를 제안한다. 이 방법은 항목 평가 시각이 아닌 유사도값의 시간에 따른 변화를 고려한다. 제안 방법의 성능 평가를 위해 다양한 파라미터값과 시간 변화 함수 종류에 대하여 실험 평가를 진행하였으며, 기존의 전통적인 유사도 척도들의 예측 성능을 크게 향상시키는 결과를 나타냈다.

목차

Abstract
요약
I. Introduction
II. Related Works
III. Proposed Methodology
IV. Performance Experiments
V. Conclusions
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0