메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Gwonsoo Lee (Chungnam National University) Phil-Yeob Lee (Hanwha Systems) Ho Sung Kim (Hanwha Systems) Hansol Lee (Hanwha Systems) Jihong Lee (Chungnam National University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2021
발행연도
2021.10
수록면
2,257 - 2,260 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This paper describes localization of autonomous underwater vehicles(AUV) in case of some navigation sensor data are an outlier. In that situation, using existing navigation algorithms causes problems in long-range localization including integration. All the integration-based existing navigation algorithms can estimate exact position, only if the integration is performed under the assumption that the position of previous step is correct. Therefore, even if an outlier sensor data occurs in a short period of time, problems in localization will continue. Also, outlier sensor data related to heading (direction of AUV) causes bigger problems. In this work, we propose a localization method through learning that is used in a situation with outlier sensor data. To do so, a learning model is designed by fully connected model and is trained through partly contaminated real sea data. For Training, displacement between subsequent GPS data is taken as reference. As a result, average Euclidean error in incremental displacements of the existing navigation algorithm result and the reference is 0.45m. On the other hand, the proposed learning-based localization shows the average Euclidean error of 0.24m. This result doesn’t mean that the localization method through learning is accurate than the existing navigation algorithm. However, if there are outlier sensor data related to heading, we can conclude that using our proposed method shows more accurate localization.

목차

Abstract
1. INTRODUCTION
2. Parallel localization module
3. EXPERIMENT
4. CONCLUSIONS
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0