메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Jeonghun Kim (Agency for Defense Development) Kyungmin Lee (Agency for Defense Development) Hyeongkeun Lee (Agency for Defense Development) Hunmin Yang (Agency for Defense Development) Se-Yoon Oh (Agency for Defense Development)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2021
발행연도
2021.10
수록면
613 - 617 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The existence of physical-world adversarial examples such as adversarial patches proves the vulnerability of real-world deep learning systems. Therefore, it is essential to develop efficient adversarial attack algorithms to identify potential risks and build a robust system. The patch-based physical adversarial attack has shown its effectiveness in attacking neural network-based object detectors. However, the generated patches are quite perceptible for humans, violating the fundamental assumption of adversarial examples. In this work, we present task-specific loss functions that can generate imperceptible adversarial patches based on camouflaged patterns. First, we propose a constrained optimization method with two camouflage assessment metrics to quantify camouflage performance. Then, we show the regularization with those metrics can help generate the adversarial patches based on camouflage patterns. Furthermore, we validate our methods with various experiments and show that we can generate natural-style camouflaged adversarial patches with comparable attack performance.

목차

Abstract
1. INTRODUCTION
2. BACKGROUND ON CAMOUFLAGE
3. PROPOSED ATTACK METHOD
4. EXPERIMENTS
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0