메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Kodai Sato (Akita Prefectural University) Hirokazu Madokoro (Iwate Prefectural University) Takeshi Nagayoshi (Akita Prefectural University) Shun Chiyonobu (Akita University) Paolo Martizzi (Akita University) Stephanie Nix (Akita Prefectural University) Hanwool Woo (The University of Tokyo) Takashi K. Saito (Akita Prefectural University) Kazuhito Sato (Akita Prefectural University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2021
발행연도
2021.10
수록면
436 - 441 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
This study was conducted to classify outcrop images using semantic segmentation methods based on deep learning algorithms. Carbon capture and storage (CCS) is an epoch-making approach to reduce greenhouse gases in the atmosphere. This study specifically examines outcrops because geological layer measurements can lead to production of a highly accurate geological model for feasible CCS inspections. Using a digital monocular RGB camera, we obtained 13 outcrop images annotated with four classes along with strata. Subsequently, we compared segmentation accuracies with changing input image sizes of three types and semantic segmentation methods of four backbones: SegNet, U-Net, ResNet-18, and Xception-65. The ResNet-18 and Xception-65 backbones were implemented using DeepLabv3+. Experimentally obtained results demonstrated that data expansion with random sampling improved the accuracy. Regarding evaluation metrics, global accuracy and local accuracy are higher than the mean intersection over union (mIoU) for our outcrop image dataset with unequal numbers of pixels in the respective classes. These experimentally obtained results revealed that resizing for input images is unnecessary for our method.

목차

Abstract
1. INTRODUCTION
2. METHOD AND EXPERIMENT SETUP
3. SEGMENTATION RESULTS
4. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0