메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
Juyoung Hong (Sejong University) Jeongmin Shin (Sejong University) Yujin Hwang (Sejong University) Jeongmin Lee (Sejong University) Yukyung Choi (Sejong University)
저널정보
제어로봇시스템학회 제어로봇시스템학회 국제학술대회 논문집 ICCAS 2021
발행연도
2021.10
수록면
220 - 224 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Early detection of depression through self-diagnosis is challenging. Especially survey-based self-diagnosis can lead to incorrect results because the answer contains the subjective opinion of the respondent. To overcome this problem, the multi sensor-based method using a smartphone has been proposed as an alternative for self-diagnosis of depression. These methods diagnose depression by using various sensor data that represented typical depression symptoms from the smartphone. However, sensor data have difficulty estimating weight changes, a representative symptom of depression. In this paper, we propose a facial image-based weight change estimation method for use in diagnosing depression. In particular, we show i) simple feature engineering, designed to fast and robustly compare between two facial images using 3D face landmarks, ii) face alignment processing that makes the model accurately compare facial images which were taken from various viewpoints, and iii) a novel preprocessing with monocular depth estimation to solve scale variance according to variation of distance between the camera and face. This code is available at https://github.com/sejong-rcv/Weight-Change-Prediction.

목차

Abstract
1. INTRODUCTION
2. RELATEDWORK
3. METHOD
4. EXPERIMENTAL RESULT
5. CONCLUSION
REFERENCES

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0