메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국차세대컴퓨팅학회 한국차세대컴퓨팅학회 논문지 한국차세대컴퓨팅학회 논문지 제7권 제4호
발행연도
2011.1
수록면
29 - 37 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
본 논문에서는 고차상관특징계수와 주성분 분석을 통해서 얻어진 특징 정보를 저차원 객체 심볼로 구성하여 객체를 인식하는 알고리즘에 대해 기술한다. 제안된 방법은 기존의 기하학적인 특징 기반 방법이나 외관기반 방법의 비해 많은 계산 량이 요구 되지 않고 최소한의 정보를 사용하고도 높은 인식률을 유지 할 수 있기에 실시간 시스템 구축에 매우 적합하다. 또한 객체 인식 시 발생하는 잘못된 인식이나 인식 오차를 줄이기 위해 객체 공간상에 투영된 모델 특징 값을 은닉마르코프 모델의 입력 기호로 이용되기 위해서 군집화 알고리즘을 통해 특정한 상태 기호로 구성한다. 이렇게 함으로써 임의의 입력 객체는 확률 값이 가장 높은 해당 객체 모델로 인식하게 된다.

목차

등록된 정보가 없습니다.

참고문헌 (8)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0