메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한금속·재료학회 Metals and Materials International Metals and Materials International Vol.15 No.3
발행연도
2009.1
수록면
427 - 437 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The microstructural evolution of titanium alloy under isothermal and non-isothermal hot forging conditions was predicted using artificial neural networks (ANN) and finite element (FE) simulation. In the present work, the change in phase volume fraction, grain size, and the volume fraction of dynamic globularization were modelled considering hot working conditions. Initially, an ANN model was developed for steady-state phase volume fraction. The input parameters were the alloy chemical composition (Al, V, Fe, O, and N) and the holding temperature, and the output parameter was the alpha/beta phase volume fraction at steady state. The non-steady state phase volume fraction under non-isothermal conditions was subsequently modelled on the basis of 4 input parameters such as initial specimen temperature, die (or environment) temperature, steady-state phase volume fraction at die (or environment) temperature, and elapsed time during forging. Resulting ANN models were coupled with the FE simulation (DEFORM-3D) in order to predict the variation of phase volume fraction during isothermal and non-isothermal forging. In addition, a grain size variation and a globularization model were developed for hot forging. To validate the predicted results from the models, Ti-6Al-4V alloy was hotworked at various conditions and then the resulting microstructures were compared with simulated data. Comparisons between model predictions and experimental data indicated that the ANN model holds promise for microstructure evolution in two phase Ti-6Al-4V alloy.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0