메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
N. S. Reddy (포항공과대학교) 이유환 (POSCO) 김정한 (한국재료연구소) 이종수 (포항공과대학교)
저널정보
대한금속·재료학회 Metals and Materials International Metals and Materials International Vol.14 No.2
발행연도
2008.1
수록면
213 - 221 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The hot deformation behavior of Ti-6Al-4V alloy with an equiaxed microstructure was investigated by means of Artificial Neural Networks (ANN). The flow stress data for the ANN model training was obtained from compression tests performed on a thermo-mechanical simulator over a wide range of temperature (from 700 ℃ to 1100 ℃) with strain rates of 0.0001 s-1 to 100 s-1 and true strains of 0.1 to 0.6. It was found that the trained neural network could reliably predict flow stress for unseen data. Workability was evaluated by means of processing maps with respect to strain, strain rate, and temperature. Processing maps were constructed at different strains by utilizing the flow stress predicted by the model at finer intervals of strain rates and temperatures. The specimen failures at various instances were predicted and confirmed by experiments. The results establish that artificial neural networks can be effectively used for generating a more reliable processing map for industrial applications. A graphical user interface was designed for ease of use of the model.

목차

등록된 정보가 없습니다.

참고문헌 (27)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0