메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
응위엔투이즈엉 (동국대학교) 임성묵 (동국대학교)
저널정보
한국SCM학회 한국 SCM 학회지 한국SCM학회지 제21권 제3호
발행연도
2021.12
수록면
13 - 26 (14page)
DOI
10.25052/KSCM.2021.12.21.3.13

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Data envelopment analysis (DEA) is a tool for identifying best-practices when multiple performance metrics or measures are present for decision-making units (DMUs). As big data issue becomes an important area of supply chain and operations management, DEA is evolving into a data-oriented data science tool for benchmarking, performance evaluation, composite index construction and others. As the number of DMUs increases, the running-time to solve the standard DEA model sharply rises. Such situations are appearing more frequently in the era of big data. This issue could be an important challenge particularly when real-time data stream in at extremely high rates and the DEA analysis needs to be performed very quickly. Therefore, there exist practical needs for developing an efficient way of solving large-scale DEA problems. In this paper, we propose a practical approach for speeding up the DEA efficiency estimation process based on machine learning. In this approach, a sample of DMUs is selected from the population as a training data set, based on which a machine is trained to predict the efficiency scores of unselected or newly streamed-in DMUs. We also suggest a data augmentation technique to enhance the learning process under severe data class imbalance. The superior performance of the proposed approach over the conventional one in terms of efficiency prediction power as well as model computation time is shown through a series of computational experiments using randomly generated data.

목차

1. 서론
2. 이론적 배경
3. 제안 프레임워크
4. 실증 실험
5. 결론
REFERENCES

참고문헌 (20)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-324-000121003