메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
안윤애 (한국교통대학교) 조한진 (극동대학교)
저널정보
한국콘텐츠학회 한국콘텐츠학회논문지 한국콘텐츠학회논문지 제21권 제12호
발행연도
2021.12
수록면
13 - 22 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
임상의사결정시스템은 누적된 의료 데이터를 활용하여 머신러닝으로 학습된 AI 모델을 환자의 진단 및 진료 예측에 적용한다. 그러나 기존의 블랙박스 기반의 AI 응용은 시스템이 예측한 결과에 대해 타당한 이유를 제시하지 못하여 설명성이 부족한 한계점이 존재한다. 이와 같은 문제점을 보완하기 위해 이 논문에서는 임상의사결정시스템의 개발 단계에서 설명이 가능한 XAI를 적용하는 시스템 모델을 제안한다. 제안 모델은 기존의 AI 모델에 설명성이 가능한 특정 XAI 기술을 추가로 적용시켜 블랙박스의 한계점을 보완할 수 있다. 제안 모델의 적용을 보이기 위해 LIME과 SHAP을 활용한 XAI 적용 사례를 제시한다. 테스트를 통해 데이터들이 모델의 예측 결과에 어떤 영향을 미치는지 다양한 관점에서 설명할 수 있다. 제안된 모델은 사용자에게 구체적인 이유를 제시함으로써 사용자의 신뢰를 높일 수 있는 장점을 가진다. 아울러 XAI의 적극적인 활용을 통해 기존 임상의사결정시스템의 한계를 극복하고 더 나은 진단 및 의사결정 지원을 가능하게 할 것으로 기대한다.

목차

요약
Abstract
I. 서론
II. 관련 연구
III. XAI 기반의 임상의사결정시스템 모델
IV. 제안 모델 기반의 XAI 적용 및 해석
V. 결론
참고문헌

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-310-000146515