메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국폐기물자원순환학회 한국폐기물자원순환학회지 한국폐기물자원순환학회지 제31권 제8호
발행연도
2014.1
수록면
919 - 926 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (5)

초록· 키워드

오류제보하기
Waste oil sludge was generated from waste oil purification process, oil bunker, or the ocean plant. Although it has high calorific values, it should be treated as a designated waste. During the recycling process of construction and demolition wastes or the trimming process of woods, a lot of sawdust is produced. In this study, the feasibility of BOF (biomass and waste oil sludge Fuel) as a source of renewable energy was estimated. To estimate combustion characteristics, a lab scale batch type combustion reactor was used and temperature fluctuation and the flue gas composition were measured for various experimental conditions. The results could be summarized as follows: the maximum CO2 concentration in the flue gas was increased with increasing waste oil sludge content in BOF. SO2 concentration in the flue gas was showed a tendency such as the highest CO2 concentration in the flue gas. With increasing waste oil sludge content in BOF, the combustion time was rather shorter although the increase of the CO2 concentration in the flue gas was delayed. Because the carbon conversion rate showed small difference with increasing the mixing ratio of waste oil sludge in BOF, BOF with the mixing ratio of waste oil sludge of 40% was effective for combustion. With decreasing the air/fuel ratio and the mixing ratio of waste oil sludge in BOF, activation energy and frequency factor were increased. The optimal air/fuel ratio for the combustion of BOF was 1.5.

목차

등록된 정보가 없습니다.

참고문헌 (9)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0