메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한금속·재료학회 Electronic Materials Letters Electronic Materials Letters Vol.10 No.4
발행연도
2014.1
수록면
819 - 826 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Abandoned peanut shells, a common farm waste, have caused tremendous environmental pollution and huge waste deposits through burned and buried disposal approaches. In targeting to enhance the potential value of peanut shells and discover a new alternative candidate for lithium ion batteries, we adopted an easy to scale-up and highly repeated method to treat fresh and dry peanut shells via acid-treatment and pyrolysis, making porous structures on carbonized peanut shells. The pyrolysis process transformed the peanut shells to porous carbon (PC) materials in a quartz tube furnace at a series of temperatures from 500°C to 700°C in N2 under the condition of 40°C gradient temperatures with a heating rate of 2°C min−1. Scanning electron microscopy (SEM) images show that the irregular porous structures and hundreds of micropores are distributed on the PC materials. The cyclic voltammogram (CV) test and particle size analysis are employed to investigate their characteristics of voltammetry and particle size distribution. PC material obtained at 620°C (PC-620) exhibited good particle distribution, porous structure and less agglomerated particles. When applied as anode materials in lithium ion batteries, the PC-620 electrode displayed the high reversible capacity of 608 mAh g–1. Moreover, the cycling performance of PC-620 was the most stable, with a high Coulombic efficiency of 98.9% at the 20th cycle, demonstrating a reversible capacity of 418 mAh g–1, which is higher than the theoretical capacity of graphite. Most importantly, the PC materials harvested from the wastes of natural resources are turned into valuable electrode materials for the high demand energy storage devices, which can significantly reduce severe environmental pollution and alleviate an energy shortage.

목차

등록된 정보가 없습니다.

참고문헌 (40)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0