메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
국제구조공학회 Structural Engineering and Mechanics, An Int'l Journal Structural Engineering and Mechanics, An Int'l Journal Vol.52 No.2
발행연도
2014.1
수록면
351 - 368 (18page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This study presents a hunting search based optimum design algorithm for engineering optimization problems. Hunting search algorithm is an optimum design method inspired by group hunting of animals such as wolves, lions, and dolphins. Each of these hunters employs hunting in a different way. However, they are common in that all of them search for a prey in a group. Hunters encircle the prey and the ring of siege is tightened gradually until it is caught. Hunting search algorithm is employed for the automation of optimum design process, during which the design variables are selected for the minimum objective function value controlled by the design restrictions. Three different examples, namely welded beam, cellular beam and moment resisting steel frame are selected as numerical design problems and solved for the optimum solution. Each example differs in the following ways: Unlike welded beam design problem having continuous design variables, steel frame and cellular beam design problems include discrete design variables. Moreover, while the cellular beam is designed under the provisions of BS 5960, LRFD-AISC (Load and Resistant Factor Design-American Institute of Steel Construction) is considered for the formulation of moment resisting steel frame. Levy Flights is adapted to the simple hunting search algorithm for better search. For comparison, same design examples are also solved by using some other well-known search methods in the literature. Results reveal that hunting search shows good performance in finding optimum solutions for each design problem.

목차

등록된 정보가 없습니다.

참고문헌 (33)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0