In this paper, unified nonlocal shear deformation theory is proposed to study bending, buckling and free vibration of nanobeams. This theory is based on the assumption that the in-plane and transverse displacements consist of bending and shear components in which the bending components do not contribute toward shear forces and, likewise, the shear components do not contribute toward bending moments. In addition, this present model is capable of capturing both small scale effect and transverse shear deformation effects of nanobeams, and does not require shear correction factors. The equations of motion are derived from Hamilton‟s principle. Analytical solutions for the deflection, buckling load, and natural frequency are presented for a simply supported nanobeam, and the obtained results are compared with those predicted by the nonlocal Timoshenko beam theory and Reddy beam theories.