메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Daehong Kim (Eulji University) Kihong Son (Electronics and Telecommunications Research Institute) Cheol-Ha Baek (Kangwon National University) Pil-Hyun Jeon (Yonsei University Wonju College of Medicine) Sooyeul Lee (Electronics and Telecommunications Research Institute)
저널정보
한국자기학회 Journal of Magnetics Journal of Magnetics Vol.26 No.4
발행연도
2021.12
수록면
429 - 436 (8page)
DOI
10.4283/JMAG.2021.26.4.429

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
As an electromagnetic wave, X-rays are used to acquire diagnostic CT images. The aim of this phantom study was to evaluate the image quality of ultra-low-dose (ULD) lung computed tomography (CT) achieved using a deep-learning based image reconstruction method. The chest phantom was scanned with a tube voltage of 100 kV for various CT dose index (CTDIvol) conditions: 0.4 mGy for ultra-low-dose (ULD), 0.6 mGy for low-dose (LD), 2.7 mGy for standard (SD), and 7.1 mGy for large size (LS). The signal-to-noise ratio (SNR) and noise values in reconstructions produced via filtered back projection (FBP), iterative reconstruction (IR), and deep convolutional neural network (DCNN) were computed for comparison. The quantitative results of both the SNR and noise indicate that the adoption of the DCNN makes the image reconstruction in the ULD setting more stable and robust, achieving a higher image quality when compared with the FBP algorithm in the SD condition. Compared with the conventional FBP and IR, the proposed deep learning-based image reconstruction approach can improve the ULD CT image quality while significantly reducing the patient dose.

목차

1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
References

참고문헌 (17)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2022-428-000146052