메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Linh Tam Tran (Kyung Hee University) Sung-Ho Bae (Kyung Hee University)
저널정보
한국방송·미디어공학회 방송공학회논문지 방송공학회논문지 제26권 제7호
발행연도
2021.12
수록면
855 - 861 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Neural Architecture Search (NAS) is cutting-edge technology in the machine learning community. NAS Without Training (NASWOT) recently has been proposed to tackle the high demand of computational resources in NAS by leveraging some indicators to predict the performance of architectures before training. The advantage of these indicators is that they do not require any training. Thus, NASWOT reduces the searching time and computational cost significantly. However, NASWOT only considers high-performing networks which does not guarantee a fast inference speed on hardware devices. In this paper, we propose a multi objectives reward function, which considers the network’s latency and the predicted performance, and incorporate it into the Reinforcement Learning approach to search for the best networks with low latency. Unlike other methods, which use FLOPs to measure the latency that does not reflect the actual latency, we obtain the network’s latency from the hardware NAS bench. We conduct extensive experiments on NAS-Bench-201 using CIFAR-10, CIFAR-100, and ImageNet-16-120 datasets, and show that the proposed method is capable of generating the best network under latency constrained without training subnetworks.

목차

Abstract
Ⅰ. Introduction
Ⅱ. Related works
Ⅲ. Proposed Training-free Hardware-Aware Neural Architecture Search
Ⅳ. Experiments
Ⅴ. Conclusion
References

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0