메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
장연식 (한국해양과학기술원) 바스 후이스만 (Deltares) 웨베 데 보어 (Deltares) 심재설 (한국해양과학기술원) 로버트 멕컬 (Deltares) 도기덕 (한국해양대학교) 유제선 (한국해양과학기술원)
저널정보
한국연안방재학회 한국연안방재학회지 한국연안방재학회지 제4권 제4호
발행연도
2017.1
수록면
161 - 176 (16page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Since a submerged breakwater (SBW) was built and the beach was nourished at Anmok in the east coast of Republic of Korea at October, 2014, the shoreline in the lee of the SBW has accreted about 25 m during the first seven months after construction. The shoreline evolution showed two distinct patterns which were studied in this paper. A strong local accretion behind the submerged breakwater was observed in March 2015 and a smoother shoreline with accretion that extended up to Gangneung Harbor breakwater in May 2015. The UNIBEST coastline model (developed at Delft Hydraulics) was applied for the investigation of the observed shoreline undulation patterns which were generated by alongshore sediment transport gradients that were induced by the SBW and nourishment. Nearshore wave conditions were computed for this purpose at nine locations in the nearshore with the Delft3D-wave model. Two detailed wave scenarios with different crest height of the SBW were taken into account to represent the transmission of waves at the SBW which were validated with field measurements. The coastline model is able to reproduce the observed shoreline evolution patterns when wave transmission at the SBW is represented well, which is the case for a wave scenario with a lowered effective crest level of the SBW. Initially, accretion takes place predominantly at the northern side of the scheme, which was similar to the observed shoreline shape of the March 2015 situation. This local accretion is a result of the low sediment transport capacity behind the SBW due to sheltering of the wave energy, which initially hinders the redistribution of sediment to the South (i.e. area in-between Gangneung Harbor and SBW). After some months, a redistribution of sediment will take place behind the SBW which results in a smoother shoreline pattern which is similar to the May 2015 situation. The rate of change of the shoreline accretion is controlled by the absolute transport rates at the coast (i.e. wave energy), but is often of lesser importance since an adjustment towards a new shoreline equilibrium may take place within relatively short time scales (i.e. months to a few years). In addition to the wave energy, it was found that the relative angle of the incoming waves (α) is most relevant for the final shoreline shape. The shoreline evolution at future SWB structures may therefore be predicted by precisely estimating the α directly after construction of the SBW.

목차

등록된 정보가 없습니다.

참고문헌 (28)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0