메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
이서영 (강원대학교) 최수정 (삼성서울병원 간호부 뇌신경센터) 서수연 (성신여자대학교) SONGPAMELA (인제대학교) 주은연 (삼성서울병원)
저널정보
대한수면연구학회 Journal of sleep medicine Journal of sleep medicine Vol.15 No.1
발행연도
2018.1
수록면
15 - 19 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objectives: It is a paradox that sleep technicians are at risk of shift work sleep disorder to help diagnose other people’s sleep disorder. Until now, there have been no guidelines for scheduling shifts for sleep technicians. The purpose of this study was to survey the current shift schedule of sleep technicians. Methods: We performed a nationwide survey of work schedules for sleep laboratories. We sent email questionnaires to sleep technicians working in university-affiliated hospitals. Information regarding starting time and duration of shift, duty on- duty off pattern for the past month, and rotation and number of sleep technicians in the sleep labs were collected. Results: We received responses from 29 sleep labs. Among the 25 labs which had designated sleep technicians, three labs had night shift schedules mixed with day work on a weekly basis and the remaining 22 labs had night only shift schedule. In cases of night only shift schedules, 11 labs alternated from night shift to day shift works or vice versa every 3 months to 3 years, while the remaining 11 labs had fixed schedules without daytime rotation. Number of night shift was four or less per week, with shift durations of 9–19 hours. Conclusions: The current policies regarding scheduling shifts varied vastly depending on individual sleep labs. We found that some labs had shift schedules with long work time, quick returns, or permanent night shifts, which are generally not recommended. Further studies are needed to develop consensus guidelines for scheduling shift of sleep technicians.

목차

등록된 정보가 없습니다.

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0