메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Shao-Ji Jiang (Sun Yat-Sen University)
저널정보
성균관대학교 성균나노과학기술원 NANO NANO Vol.11 No.10
발행연도
2016.1
수록면
59 - 69 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Noble metal sculptured thin films are of great interest during last decade as excellent surfaceenhanced Raman scattering (SERS) substrates due to remarkable plasmonic properties in the visible and near-infrared range. In this work, Ag columnar thin films (Ag-CTFs) have been prepared by the glancing angle deposition technique. Finite-difference time-domain simulations has been utilized to study plasmonic properties of Ag-CTFs with a more accurate model based on binary scanning electron microscope (SEM) images by taking account of the shape irregularities, size distributions and random arrangement. The calculated absorption spectra based on the model of binarized SEM images show the best agreement with the measured spectra compared with models of periodic array with a regular shape. The near-field plasmonic properties are simulated based on the verified model. The distributions of electric field enhancement and hot spots are confirmed to be spectral and polarization dependent. There are multiple resonance peaks from visible to near-infrared and multiple eigenmodes coexist at the same wavelength and electric field enhancement are mainly excited by the polarized light vertical to the gap orientation. The electric field enhancement is found to distribute unevenly in the films with surface-localized feature. The equations to calculate the simulation SERS enhancement factor (EF) and total number of hot spots (tHN) are modified according to the above discussions. The experimental SERS EFs are on the order of 107 – 108 , which indicates the high sensitivity of the films and the simulation SERS EFs and tHNs show good agreement with the experimental EFs. It is found that the SERS performance of Ag-CTFs is decided by both the cross-section structural characteristics and film thickness, which affect the electric filed enhancement and number of adsorbed molecules, respectively. Our work could be helpful in understanding the SERS mechanism and useful to the optimization of metal sculptured thin films for designing SERS biosensor.

목차

등록된 정보가 없습니다.

참고문헌 (43)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0