메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
김선범 (한양대학교) 배준우 (한양대학교) 박희진 (한양대학교)
저널정보
한국차세대컴퓨팅학회 한국차세대컴퓨팅학회 논문지 한국차세대컴퓨팅학회 논문지 제13권 제5호
발행연도
2017.1
수록면
124 - 130 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (3)

초록· 키워드

오류제보하기
문자 인코딩은 문자나 기호를 컴퓨터로 표현하기 위해 사용되는 방법이며 문자 인코딩 판별 소프트웨어들이 존재한다. 기존의 널리 쓰이는 인코딩 판별 소프트웨어인“uchardet”의 경우 변조되지 않은 일반 문서의 인코딩 판별 정확도는 91.39% 이지만 언어 판별 정확도는 32.09%에 불과하다. 또한 문서가 치환 암호에 의해 암호화 된 경우 인코딩 판별 정확도는 3.55%, 언어 판별 정확도는 0.06%로 매우 낮은 정확도를 보였다. 따라서 본 논문에서는Deep learning 알고리즘인 LSTM(Long Short-Term Memory)을 이용한 문서의 인코딩 및 언어 판별 방법을제안하며, 기존의 인코딩 판별 소프트웨어“uchardet”보다 뛰어난 결과를 보였다. 제안하는 방법을 이용한 일반 문서의 인코딩 판별 정확도는 99.89%이며, 언어 판별 정확도는 99.92%이다. 또한 문서가 치환 암호에 의해 암호화된 경우에는 제안하는 방법의 인코딩 판별 정확도는 99.26%이며, 언어 판별 정확도는 99.77%로 매우 뛰어나다.

목차

등록된 정보가 없습니다.

참고문헌 (11)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0