메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Dale Ding (Barrow Neurological Institute) Colin J. Przybylowski (Barrow Neurological Institute) Robert M. Starke (University of Miami) R. Webster Crowley (Rush University) Kenneth C. Liu (University of Virginia)
저널정보
대한뇌혈관외과학회 Journal of Cerebrovascular and Endovascular Neurosurgery Journal of Cerebrovascular and Endovascular Neurosurgery Vol.19 No.2
발행연도
2017.1
수록면
101 - 105 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Large lobar intracerebral hemorrhages (ICHs) can cause rapid neurological deterioration, and affected patients have low rates of survival and functional independence. Currently, the role of surgical intervention in the management patients with lobar ICHs is controversial. Minimally invasive technologies have been developed which may potentially decrease the operative morbidity of ICH surgery. The aim of this case report is to describe the technical aspects of the use of a novel minimally invasive endoport system, the BrainPath (NICO, Indianapolis, IN, USA), through an eyebrow incision for evacuation of a large lobar hematoma. An 84-year-old female presented with a left frontal ICH, measuring 7.5 cm in maximal diameter and 81 cm3 in volume, secondary to cerebral amyloid angiopathy. Through a left eyebrow incision, a miniature modified orbitozygomatic craniotomy was performed, which allowed endoport cannulation of the hematoma from a lateral subfrontal cortical entry point. Endoport-assisted hematoma evacuation resulted in nearly 90% volume reduction and improvement of the patient's functional status at clinical follow-up. We found that minimally invasive endoport technology can be employed in conjunction with conventional neurosurgical skull base principles to achieve safe and effective evacuation of large lobar hematomas in carefully selected patients.

목차

등록된 정보가 없습니다.

참고문헌 (17)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0