메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
차명일 (명지병원 응급의학과) 김기운 (순천향대학교부속부천병원) 김주현 (인제대학교 서울백병원 응급의학과) 좌민홍 (연세대학교) 최대해 (동국대학교) 왕순주 (한림대학교) 유인술 (충남대학교) 윤한덕 (국립중앙의료원 중앙응급의료센터) 이강현 (연세대학교) 조석주 (부산대학교) 허탁 (전남대학교) 홍은석 (울산대학교) 김인병 (명지병원 응급의학과)
저널정보
대한응급의학회 대한응급의학회지 대한응급의학회지 제28권 제1호
발행연도
2017.1
수록면
97 - 108 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Purpose: To investigate and document a disaster medical response during the collapse of the Gyeongju Mauna Ocean Resort gymnasium, which occurred on February 17, 2014. Methods: The official records of each institution were verified to select the study population. All the medical records and emergency medical service records were reviewed by an emergency physician. Personal or telephonic interviews were conducted without a separate questionnaire if the institutions or agencies crucial to disaster response did not have official records or if information from different institutions was inconsistent. Results: One hundred fifty-five accident victims, who were treated at 12 hospitals mostly for minor wounds, were included in this study. The collapse killed 10 people. Although the news of the collapse was disseminated in 4 minutes, it took at lease 69 minutes for a dispatch of 4 disaster medical assistance teams to take action; 4.5% of patients were treated on-site, 56.7% were transferred to 2 nearest hospitals, and 42.6% were transferred to hospitals with poor preparation to handle disaster victims. Conclusion: In the collapse of the Gyeongju Mauna Ocean Resort gymnasium, the initial triage and distribution of patients were inefficient, with delayed arrival of medical assistance teams. These problems had also been noted in prior mass casualty incidents. Government agencies are implementing improvements, and this study could aid the implementation process.

목차

등록된 정보가 없습니다.

참고문헌 (21)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0