메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Kazuomi Kario (Division ofCardiovascular MedicineDepartment ofMedicineJichi Medical University School of Medicine)
저널정보
대한심장학회 Korean Circulation Journal Korean Circulation Journal Vol.46 No.4
발행연도
2016.1
수록면
456 - 467 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Blood pressure (BP) exhibits different variabilities and surges with different time phases, from the shortest beat-by-beat to longest yearly changes. We hypothesized that the synergistic resonance of these BP variabilites generates an extraordinarily large dynamic surge in BP and triggers cardiovascular events (the resonance hypothesis). The power of pulses is transmitted to the peripheral sites without attenuation by the large arteries, in individuals with stiffened arteries. Thus, the effect of a BP surge on cardiovascular risk would be especially exaggerated in high-risk patients with vascular disease. Based on this concept, our group recently proposed a new theory of systemic hemodynamic atherothromboltic syndrome (SHATS), a vicious cycle of hemodynamic stress and vascular disease that advances organ damage and triggers cardiovascular disease. Clinical phenotypes of SHATS are large-artery atherothombotic diseases such as stroke, coronary artery disease, and aortic and pheripheral artery disease; small-artery diseases, and microcirculation-related disease such as vascular cognitive dysfunction, heart failure, and chronic kidney disease. The careful consideration of BP variability and vascular diseases such as SHATS, and the early detection and management of SHATS, will achieve more effective individualized cardiovascular protection. In the near future, information and communication technology-based ‘anticipation medicine’ predicted by the changes of individual BP values could be a promising approach to achieving zero cardiovascular events.

목차

등록된 정보가 없습니다.

참고문헌 (87)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0