메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Xicheng Wang (Jiangsu Academy of Agricultural Sciences) Mizhen Zhao (Jiangsu Academy of Agricultural Sciences) Weimin Wu (Jiangsu Academy of Agricultural Sciences) Nicholas Kibet Korir (Kenyatta University) Yaming Qian (Jiangsu Academy of Agricultural Sciences) Zhuangwei Wang (Jiangsu Academy of Agricultural Sciences)
저널정보
한국유전학회 Genes & Genomics Genes & Genomics Vol.39 No.5
발행연도
2017.1
수록면
493 - 507 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Gibberellin (GA) is widely used to enlarge berries of seedless table grape and raisin varieties. The molecular mechanism underlying the berry-sizing effect of gibberelins is however poorly understood. We used a high-throughput deep sequencing technology to investigate the transcriptome and comparative expression profiles of berries from Vitis vinifera L. ‘Summer Black’ treated with GA3 with the aim of increasing the understanding of molecular mechanisms underlying the species’ expansion growth responses to exogenous GA3 hormone application. A total of 591 differentially expressed genes (DEGs) were detected including genes involved in fruit expansion and growth. There were four expansion genes, three cellulose synthase A catalytic subunit genes, four cellulose synthaselike protein genes and three xyloglucan endotransglucosylase genes. Differential expression of these genes could potentially explain the difference in the growth and sizes of fruits from control (CK) and GA3 treated (+GA) vines. In addition, the expression patterns of 14 DEGs were validated by qRT-PCR, and the outcomes agreed highly with the RNA-Seq results. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed to better understand the functions of these DEGs. We also identified a large number of single nucleotide polymorphism and insertion/deletion markers, which will be a rich resource for future marker development and breeding research in grape. The transcriptome analysis provides valuable information for furthering our understanding of the molecular mechanisms that regulate the fruit expansion growth, and adds to the growing foundation for future genetic and functional genomic studies in grape fruit.

목차

등록된 정보가 없습니다.

참고문헌 (76)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0