메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Prima Riza Kadavi (강원대학교) 이창욱 (강원대학교)
저널정보
한국지질과학협의회 Geosciences Journal Geosciences Journal Vol.22 No.4
발행연도
2018.1
수록면
653 - 665 (13page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Land cover (LC) mapping is an important research topic with many applications in remote sensing. Especially, for volcanic areas where direct field access is difficult, remote sensing data are needed to map LC. Volcanic areas are attractive targets for LC mapping because any spread of volcanic eruptions must be monitored. When creating LC maps, it is important to minimize errors because such errors compromise analyses using these maps. Here, we analyzed multispectral data from Mount Kanaga, Mount Fourpeaked, Mount Pavlof, and Mount Augustine using two different classifiers, an artificial neural network (ANN) and a support vector machine (SVM). To this end, we employed Landsat 8 imagery, which features four LC classes: outcrops (pyroclastic deposits, volcanic rock, sand, etc.), vegetation, water bodies, and snow. We found that the SVM was more accurate than the ANN. For Mount Kanaga, the SVM afforded the best classification accuracy (98.08%), 9.14% better than the ANN (88.94%); for the other volcanoes, the accuracy of the two methods did not differ significantly. Overall, both classifiers accurately distinguished products of volcanic eruption (outcrops) from other LC. Thus, both the ANN and SVM can be used for LC classification.

목차

등록된 정보가 없습니다.

참고문헌 (42)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0