메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Guangjian Liu (China University of Mining and Technology) Zonglong Mu (China University of Mining and Technology) Jianjun Chen (China University of Mining and Technology) Jing Yang (China University of Mining and Technology) Jinglong Cao (China University of Mining and Technology)
저널정보
한국지질과학협의회 Geosciences Journal Geosciences Journal Vol.22 No.4
발행연도
2018.1
수록면
609 - 622 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In many coal mines in China, skip-mining and the corner coal pillar will lead to the formation of an island longwall coal face (ILCF), which will induce a series of problems. Rock bursts pose a severe threat to miners and safe production in coal mines. Here, we used a mechanical model, theoretical calculations, seismic computed tomography, and energy density to explore the stress field distribution in an ILCF to obtain some pre-warning parameters. Based on elastic thin-plate theory, three cases of rock strata of ILCF were analysed to explore various stress fields (case 1: solid coal, case 2: two-sided goaf, and case 3: four-sided goaf). The stress reaches the peak value at the points of “a = b” in case 1, “a = 0.7b” in case 2, and “a = 1.4b” in case 3, respectively, which indicates high rock burst risk. In the case study, the test methods of seismic computed tomography and energy density were used on four ILCFs in Zhaolou Coal Mine (ILCFs 11301, 1307, 1305, and 1306). The stress field can be reflected by the three parameters: velocity distribution, velocity gradient, and stress concentration factor; and the energy density can indirectly reflect the accumulated damage of coal and rock mass and test two parameters of velocity distribution and stress concentration factor, which verifies the stress field in ILCFs, and assesses their rock burst risk.

목차

등록된 정보가 없습니다.

참고문헌 (36)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0