메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Zhibo Zhang (China University of Mining and Technolog) Enyuan Wang (China University of Mining and Technolog) Enyuan Wang (China University of Mining and Technolog)
저널정보
한국지질과학협의회 Geosciences Journal Geosciences Journal Vol.21 No.2
발행연도
2017.1
수록면
223 - 233 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Single-link cluster is introduced into mine microseism monitoring from a seismology point of view. The changes in spatial correlation length of mine microseismic events at different spatial scales are analyzed, and the underlying mechanisms are explained. The results show that large-energy microseismic events often occur after the spatial correlation length drops to a low value when the spatial scale is large. The larger the energy of microseismic events is, the more obvious the law is. Large-energy microseismic events occur after the spatial correlation length exhibits the power-law growth phenomenon, when the spatial scale becomes small. The smaller the spatial scale is, the more obvious the law is. The reason for this property is that microseismic events exhibit the space aggregation phenomenon before a large-energy microseismic event occurs, resulting in decreases in spatial correlation length when the spatial scale is large. By contrast, when the spatial scale is small, the spatial correlation degree of regional microseismic sources is high. Small-energy microseismic events occur gradually with concentration in low-intensity regions, and a large number of small cracks are produced before a large microseismic event occurs. The microseismic source is dispersed again once the regional stress is released. The entire system achieves a critical state. There is small cracks coalescence at a particular moment, which triggers a large-energy microseismic event. Therefore, it exhibits the phenomenon of power-law growth of the correlation length before the occurrence of the large-energy microseismic event. Moreover, statistical analysis of the bond length and frequency of SLC is performed. The result is that three non-scale ranges are identified. The turning points of the first two nonscale ranges are 180 m and 240 m, respectively, while the turning points of the second and third non-scale ranges are both approximately 450 m. The difference between the first turning points is due to the artificial disturbance, while the second turning point is affected by the geological environment.

목차

등록된 정보가 없습니다.

참고문헌 (45)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0