메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
조의진 (고려대학교) 김세훈 (고려대학교) 김원형 (고려대학교안산병원) 진성원 (고려대학교) 이승환 (고려대학교안산병원) 김범준 (고려대학교안산병원) 하성곤 (고려대학교) 김상대 (고려대학교) 임동준 (고려대학교)
저널정보
대한척추신경외과학회 Neurospine 대한척추신경외과학회지 제14권 제2호
발행연도
2017.1
수록면
44 - 49 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
Objective: Odontoid fracture is common in cervical injury, representing about 20% of total cervical fractures. Classic odontoid fracture classification focused on anatomy of fracture site has no treatment recommendation and a modified treatment-oriented classification of odontoid fracture was suggested in 2005. We reviewed our odontoid fracture patients to assess the feasibility and efficacy of Grauer’s classification. Methods: Between October 2000 and September 2015, we collected data from patients who came to our institute for odontoid fracture. Demographic data of patients was reviewed, and neck visual analog scale (VAS) score and fusion rate were assessed by reviewing electronic medical records retrospectively. Results: Sixty-nine patients out of a total of eighty two odontoid fracture patients were reviewed according to Grauer’s classification. Neck VAS of all subtypes in odontoid fracture classification were decreased at last follow-up (p=0.001). Overall fusion rate was 88.4% at last follow-up. Concordance rate between Grauer’s recommendation and our treatment was 69.9%, especially in type II with the concordance higher than 80%. Complication was minimal representing 7.2%, only in types I and III. Conclusion: In this study, there were statistically significant improvement in all subtypes in terms of neck VAS at the last follow up, especially in types II and III. Grauer’s classification appears to be meaningful to decide treatment plan for odontoid fractures, especially type II odontoid fracture.

목차

등록된 정보가 없습니다.

참고문헌 (16)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0