메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Gabriele Ravizza (University of Bergamo) Rosalba Ferrari (University of Bergamo) Egidio Rizzi (University of Bergamo) Eleni N. Chatzi (Institute of Structural Engineering)
저널정보
국제구조공학회 Smart Structures and Systems, An International Journal Smart Structures and Systems, An International Journal Vol.22 No.5
발행연도
2018.1
수록면
631 - 641 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This paper outlines a computational procedure for the effective merging of diverse sensor measurements, displacement and acceleration signals in particular, in order to successfully monitor and simulate the current health condition of civil structures under dynamic loadings. In particular, it investigates a Kalman Filter implementation for the Heterogeneous Data Fusion of displacement and acceleration response signals of a structural system toward dynamic identification purposes. The procedure is perspectively aimed at enhancing extensive remote displacement measurements (commonly affected by high noise), by possibly integrating them with a few standard acceleration measurements (considered instead as noise-free or corrupted by slight noise only). Within the data fusion analysis, a Kalman Filter algorithm is implemented and its effectiveness in improving noise-corrupted displacement measurements is investigated. The performance of the filter is assessed based on the RMS error between the original (noise-free, numerically-determined) displacement signal and the Kalman Filter displacement estimate, and on the structural modal parameters (natural frequencies) that can be extracted from displacement signals, refined through the combined use of displacement and acceleration recordings, through inverse analysis algorithms for output-only modal dynamics identification, based on displacements.

목차

등록된 정보가 없습니다.

참고문헌 (50)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0