메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Hassan Bakhshandeh Amnieh (University of Tehran) Majid Masoudi (University of Kashan) Mohammdamin Karbala (Amirkabir Univ. of Tech)
저널정보
한국계산역학회 Computers and Concrete, An International Journal Computers and Concrete, An International Journal Vol.20 No.3
발행연도
2017.1
수록면
275 - 282 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Grouting is an operation often carried out to consolidate and seal the rock mass in dam sites and tunnels. One of the important parameters in this operation is grouting pressure. In this paper, analytical models used to estimate pressure are investigated. To validate these models, grouting data obtained from Seymareh and Aghbolagh dams were used. Calculations showed that P-3 model from Groundy and P-25 model obtained from the results of grouting in Iran yield the most accurate predictions of the pressure and measurement errors compared to the real values in P-25 model in this dams are 12 and 14.33 Percent and in p-3 model are 12.25 and 16.66 respectively. Also, SPSS software was applied to define the optimum relation for pressure estimation. The results showed a high correlation between the pressure with the depth of the section, the amount of water take, rock quality degree and grout volume, so that the square of the multiple correlation coefficient among the parameters in this dams were 0.932 and 0.864, respectively. This indicates that regression results can be used to predict the amount of pressure. Eventually, the relationship between the parameters was obtained with the correlation coefficient equal to 0.916 based on the data from both dams generally and shows that there is a desirable correlation between the parameters. The outputs of the program led to the multiple linear regression equation of P=0.403 Depth+0.013 RQD+0.011 LU–0.109 V+0.31 that can be used in estimating the pressure.

목차

등록된 정보가 없습니다.

참고문헌 (30)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0