메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
S. Amir M. Ghannadpour (Shahid Beheshti University) Mona Karimi (Shahid Beheshti University)
저널정보
국제구조공학회 Structural Engineering and Mechanics, An Int'l Journal Structural Engineering and Mechanics, An Int'l Journal Vol.68 No.5
발행연도
2018.1
수록면
603 - 619 (17page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In this research, an effective computational technique is carried out for nonlinear and post-buckling analyses of cracked imperfect composite plates. The laminated plates are assumed to be moderately thick so that the analysis can be carried out based on the first-order shear deformation theory. Geometric non-linearity is introduced in the way of von-Karman assumptions for the strain-displacement equations. The Ritz technique is applied using Legendre polynomials for the primary variable approximations. The crack is modeled by partitioning the entire domain of the plates into several sub-plates and therefore the plate decomposition technique is implemented in this research. The penalty technique is used for imposing the interface continuity between the sub-plates. Different out-of-plane essential boundary conditions such as clamp, simply support or free conditions will be assumed in this research by defining the relevant displacement functions. For in-plane boundary conditions, lateral expansions of the unloaded edges are completely free while the loaded edges are assumed to move straight but restricted to move laterally. With the formulation presented here, the plates can be subjected to biaxial compressive loads, therefore a sensitivity analysis is performed with respect to the applied load direction, along the parallel or perpendicular to the crack axis. The integrals of potential energy are numerically computed using Gauss-Lobatto quadrature formulas to get adequate accuracy. Then, the obtained non-linear system of equations is solved by the Newton-Raphson method. Finally, the results are presented to show the influence of crack length, various locations of crack, load direction, boundary conditions and different values of initial imperfection on nonlinear and post-buckling behavior of laminates.

목차

등록된 정보가 없습니다.

참고문헌 (47)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0