메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
S. Najmedin Almasi (Isfahan University of Technology) Raheb Bagherpour (Isfahan University of Technology) Reza Mikaeil (Urmia University of Technology) Yilmaz Ozcelik (Hacettepe University)
저널정보
한국자원공학회 Geosystem Engineering Geosystem Engineering Vol.20 No.6
발행연도
2017.1
수록면
295 - 310 (16page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Predicting the sawability of dimension stone is one of the most important factors in the optimized design and cost estimation of quarrying. This paper aims to predict the cutting rate of diamond wire saw (DWS) as main performance criteria. For this purpose, a classification system for ranking the sawability of hard dimension stone based on the toughness, abrasiveness, and hardness of rock was initially developed, and a Hard Dimension Stone Sawability index (HDSSi) was defined. Then, by means of multiple curvilinear regression analysis, the data were analyzed and the relationship between the cutting rate with the HDSSi, and pullback amperage was obtained with a high correlation coefficient (.846) in data training, and .801 in data test. Validation of the model was carried out by considering the t-test, F-test, and the coefficient of determination. During this research, varieties of 11 types of hard rock were cut in a laboratory using a DWS and a fully instrumented cutting platform at different pullbacks. The results show that the cutting rate of hard dimension stones with a DWS can be successfully predicted using the developed model.

목차

등록된 정보가 없습니다.

참고문헌 (2)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0