메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Jennefer Mononteliza (University of Antique)
저널정보
아태인문사회융합기술교류학회 아시아태평양융합연구교류논문지 아시아태평양융합연구교류논문지 제6권 제5호
발행연도
2020.1
수록면
123 - 133 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
With the popularization of social network and global positioning technology, location-based social network applications have developed rapidly. Location-based social network data contains a lot of interest information. In order to solve the problem of poor recommendation result caused by the strong sparsity of matrix in traditional recommendation algorithm. This paper proposes a method of interest point recommendation based on location classification and user similarity. Social regularization is used to constrain the difference of location category preference in social relations, which solves the data sparsity problem of collaborative filtering. The proposed algorithm was tested using Foursquare public dataset and compared with the relevant algorithm. Experimental results show that the proposed algorithm has high precision and recall.

목차

등록된 정보가 없습니다.

참고문헌 (15)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0