메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한수면학회 sleep medicine research sleep medicine research Vol.11 No.2
발행연도
2020.1
수록면
70 - 76 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Background and ObjectiveaaSleep apnea is a rather common illness, which occurs due to dyspnea during night sleep. The effects of this illness can cause problems in the patient’s life and affect its quality. Therefore, its timely diagnosis, using machine algorithms can be an important step towards preventing and controlling this illness. MethodsaaIn this study is using artificial neural networks, in order to detect the severity of sleep apnea among 200 patients, who visited the Imam Khomeini sleep clinic in Tehran. Then the artificial neural network with the structure (8-10-3-1), Sigmoid transfer function and 120 educational cycles were designed and educated based on 70% of the data at hand. The artificial neural network was designed, using MATLAB2018. ResultsaaUsing the multi-layer perceptron classifier with 10-fold cross validation tests led to 96.5%, 92.4%, 91.5% and 94.5% correctness, respectively for normal, mild, moderate and severe classifications. Enough correctness of the algorithm reduces the patients’ need to take the polysomnography test. ConclusionsaaThe results show that using artificial neural network can be useful in detecting the sleep apnea severity, without using costly tests and limited PSG.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0