메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Renxing Huang (Sichuan University of Science & Engineering) Ying Lei (Sichuan University of Science & Engineering) Dandan Zhang (Sichuan University of Science & Engineering) Huaming Xie (Sichuan University of Science & Engineering) Xingyong Liu (Sichuan University of Science & Engineering) Honghui Wang (Sichuan University of Science & Engineering)
저널정보
성균관대학교 성균나노과학기술원 NANO NANO Vol.14 No.9
발행연도
2019.1
수록면
1 - 16 (16page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
It is highly pleasurable but challenging to develop economical and efficient catalysts for accelerating the oxygen reduction reaction (ORR) endowed with sluggish kinetics involved in renewable energy conversion and storage systems such as Zn-air batteries. Herein, N, P and Si tri-doped porous carbon (SiN-PA900) catalysts was prepared by a simple one-step pyrolysis strategy using the mixture of the ionic liquid formed by phytic acid (PA) and N-methylimidazole and tetraethyl orthosilicate (TEOS) as N, P, Si and carbon sources, and the PA as pore-foaming agent. The resulting SiN-PA900 shows favorable catalytic activity toward ORR with an onset potential of 0.94 V versus RHE, half-wave potential of 0.81 V versus RHE, robust stability and excellent tolerance for methanol in alkaline medium, which are comparable to those of the commercial 20% Pt/C. More impressively, the assembled primary Zn-air battery employing the SiN-PA900 as cathode catalysts can achieve a peak power density of 181.4 mW/cm2. Those encouraging properties could be attributed to a synergistic effect of the doped N, P and Si atoms in the carbon matrix, good surface wettability, high surface areas and hierarchical porous structures for sufficient contact and rapid transportation of the reactants in terms of composition and structures.

목차

등록된 정보가 없습니다.

참고문헌 (9)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0