메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Shenghai Zhou (Hebei Normal University) Hongbo Xu (Hebei Normal University) Yanjun Wei (Hebei Normal University) Jing Gao (Hebei Normal University) Yue Feng (Hebei Normal University) Ning Wang (Hebei Normal University) Junfeng Gao (Hebei Normal University)
저널정보
성균관대학교 성균나노과학기술원 NANO NANO Vol.14 No.8
발행연도
2019.1
수록면
109 - 118 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Heteroatom-doped ordered mesoporous carbons (OMCs) have currently been considered as promising electrode materials for electrochemical sensors due to the combined advantages of ordered mesoporous materials and heteroatom-doped carbon materials. Herein, a novel nitrogen and sulfur co-doped OMCs (N,S-OMC) has been prepared via a nanocasting strategy with an inexpensive methylene blue as single precursor. The obtained mesoporous carbon has platelet morphology, short mesoporous channel together with a large surface area (549 m2/g) as well as rich N- and S-containing functional groups (6.8 at.% N and 2.3 at.% S). Compared with the graphene (GR) and carbon nanotube (CNT) electrode material, the N,S-OMC exhibited a higher electrochemical activity towards the oxidation of herbicide amitrole, ascribable to N,S-OMC's open mesoporous structures and abundant electroactive defect sites on the carbon skeleton. And, an amitrole electrochemical sensor with N,S-OMC modified electrode as working electrode was fabricated, exhibiting a good selectivity, stability, reproducibility and wide linear range of 3–750 μM. Moreover, the N,S-OMC-based electrochemical sensor was proved feasible in river water sample analyses, showing a satisfied recovery ranging from 97.03% to 105.42%. The results not only demonstrate cheap methylene blue can be used as single precursor for the N,S-OMC preparation, but also confirm the N,S-OMC is promising in amitrole sensor fabrication.

목차

등록된 정보가 없습니다.

참고문헌 (43)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0