메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Renzhong Huang (Hubei University of Technology) Yuqiu Xie (Hubei University of Technology) Qing Chang (South-Central University) Jian Xiong (Hubei University of Technology) Shiqi Guan (Hubei University of Technology) Songdong Yuan (Hubei University of Technology) Guodong Jiang (Hubei University of Technology)
저널정보
성균관대학교 성균나노과학기술원 NANO NANO Vol.14 No.6
발행연도
2019.1
수록면
128 - 141 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
A covalent linkage between polyaniline (PANI) and Si nanoparticles in PANI-encapsulated Si nanocomposites was proposed and achieved by a facile and economical synthetic strategy, in which NH2-grafted Si was first obtained via a chemical modification of Si surface and the polymerization of aniline initiated at NH2 group surface was readily accomplished to get PANI shell. The characterizations suggested that NH2 groups were successfully introduced onto Si surface and PANI-encapsulated Si nanocomposites with a core/shell structure were fabricated. Electrochemical tests showed that our proposed Si nanocomposites delivered a high initial specific capacity of 2135 mAh/g and retained 848 mAh/g after 100 charge/discharge cycles at a current density of 0.1 A/g, which were superior than that of the normal PANI-encapsulated Si nanocomposites with the absence of chemical bonds in the interface. The enhanced electrochemical performance was ascribed to the surface chemical modification and the introduction of chemical bond in the interface. NH2 group function of Si could improve the homogeneity of encapsulated PANI shell. Additionally, PANI was tightly anchored to Si nanoparticles via a covalent bond between silicon and PANI, which would greatly inhibit the separation of PANI from Si surface during the expansion/contraction of Si particles. Thus, the structural integrity was maintained. Besides, PANI layer with a unique structure promoted the transport of both electrons and lithium ions.

목차

등록된 정보가 없습니다.

참고문헌 (51)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0