메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Xiaohe Tao (Henan University) Sai Guo (Henan University) Peisong Liu (Henan University) Xiaohong Li (Henan University) Zhijun Zhang (Henan University)
저널정보
성균관대학교 성균나노과학기술원 NANO NANO Vol.14 No.2
발행연도
2019.1
수록면
70 - 78 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Different dosages of hexamethyldisilazane (denoted as HMDS), a silane coupling agent, were adopted to modify nanosilica (denoted as NS) to afford a series of HMDS-NS nanoparticles with different hydrophilic-lipophilic balance governed by the amount of surface hydroxyl. The amounts of the hydrophilic hydroxyl of the as-prepared HMDS-NS nanoparticles and their water contact angles were measured, and their dispersing behavior in water and oil was examined in relation to their transfer behavior therein. Moreover, the effects of the as-prepared HMDS-NS nanofluids on the oil–water interfacial tension as well as the oil recovery were investigated based on interfacial tension measurements and simulated rock core flooding tests. Findings indicate that the hydrophilic-lipophilic balance of HMDS-NS nanoparticles highly depends on the amount of the surface hydroxyl, and the surface hydroxyl amount can be well adjusted by properly selecting the dosage of HMDS modifier. Besides, the transfer behavior of HMDS-NS nanoparticles in oil and water is closely related to their hydrophilic-lipophilic balance, and they can greatly reduce the oil–water interfacial tension and increase the oil recovery by 7.7–11.1% as compared with conventional water flooding. This is because the surface grafting of the hydrophobic segments of HMDS leads to a significant increase in the hydrophobicity of nanosilica, thereby changing the wettability of oil on the sand surface and favoring the stripping of oil droplets. Particularly, the HMDS-NS nanofluid obtained with 2wt.% of HMDS modifier has a water contact angle of 83.6 ° and can dramatically reduce the oil–water interfacial tension from 20.22mN/m to 0.28mN/m, showing desired hydrophilic-lipophilic balance and potential for enhanced oil recovery associated with chemical flooding.

목차

등록된 정보가 없습니다.

참고문헌 (24)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0