메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
권희용 (인하대학교) 임종혁 (인하대학교) 이문규 (인하대학교)
저널정보
한국차세대컴퓨팅학회 한국차세대컴퓨팅학회 논문지 한국차세대컴퓨팅학회 논문지 제15권 제4호
발행연도
2019.1
수록면
7 - 17 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
기계 학습은 다양한 현상의 예측 및 분석 등을 가장 정확하게 수행하는 기술 중 하나이다. K-평균 클러스터링은 주어진 데이터들을 비슷한 데이터들의 군집으로 분류하는 기계 학습 기법의 한 종류로 다양한 분야에서 사용된다. K-평균 클러스터링의 성능을 높이기 위해서는 가능하면 많은 데이터에 기반한 분석을 수행하는 것이 바람직하므로, K-평균 클러스터링은 데이터를 제공하는 다수의 클라이언트들과 제공받은 데이터들을 사용하여 클러스터의 중심값을 계산하는 서버가 있는 모델에서 수행될 수 있다. 그러나 이 모델은 클라이언트들의 데이터가 민감한 정보를 포함하고 있는 경우, 서버가 클라이언트들의 프라이버시를 침해할 수 있다는 문제점이 있다. 본 논문에서는 다수의 클라이언트가 있는 모델에서 이러한 문제를 해결하기 위해 동형 암호를 사용하여 클라이언트의 프라이버시를 보호하며 기계 학습을 수행할 수 있는 프라이버시 보장형 K-평균 클러스터링 방법을 제안한다.

목차

등록된 정보가 없습니다.

참고문헌 (31)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0