메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
전기일 (경남과학기술대학교) 권도혁 (경남과학기술대학교) 기서진 (경남과학기술대학교)
저널정보
한국수처리학회 한국수처리학회지 한국수처리학회지 제28권 제1호
발행연도
2020.1
수록면
49 - 57 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
This study was conducted to compare the predictive accuracy of three popular machine learning algorithms, i.e., Bayesian Regularized Neural Networks (BRNN), Neural Network (NN), and Support Vector Machines with Radial Basis Function Kernel (SVM), for modeling river water quality and quantity. Input data with 11 parameters collected from three monitoring sites in the lower part of the Nakdong River between January 2008 to December 2018 were input into the three algorithms. The data were divided into two subsets, which included a training data set and test data set in a ratio of 70:30. The results showed that NN displayed better performance in prediction accuracy than BRNN and SVM when optimizing one or two tuning parameters. The prediction accuracy was, on average, higher for chlorophyll a than for discharge, regardless of which machine learning algorithm was used. Identical results were also observed in the training data set. The two variables biochemical oxygen demand (BOD) and chemical oxygen demand (COD) played an important role in predicting chlorophyll a, whereas suspended solids (SS) was designated as the largest contributor for the prediction of discharge in all three algorithms. In terms of error metrics and performance indices such as root mean squared error (RMSE), mean absolute error (MAE), and R2, the three machine learning algorithms exhibited improved performance in the test data set, as compared to the training data set. We believe that this preliminary study helps identify suitable methods for enhanced prediction of emerging water quality or quantity parameters such as harmful algal blooms.

목차

등록된 정보가 없습니다.

참고문헌 (14)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0