메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
안명석 (국립원예특작과학원) 정재아 (국립원예특작과학원) 윤태우 (국립원예특작과학원) Manjulatha Mekapogu (국립원예특작과학원) 송현영 (국립원예특작과학원) 권오근 (국립원예특작과학원 화훼과)
저널정보
한국화훼학회 화훼연구 화훼연구 제28권 제4호
발행연도
2020.1
수록면
269 - 278 (10page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
The aim of the present study was to investigate the differences in volatile profiles among different Korean chrysanthemum cultivars grown as cut flowers. To optimize a method for sampling and comparing scents, the scents were evaluated by electronic nose (E-nose) at different flowering stages and in different organs and cultivars. The values of maximum resistance changes of metal oxide semiconductor sensors and relative aroma intensity were highest at flowering stage III (full flower stage of ray florets and initial opening disc florets) among different stages and in disc florets among different floral organs of cut chrysanthemums. Among the 12 chrysanthemum cultivars, the highest values for response change and relative aroma intensity were observed in the flowers of the ‘Ilweol’ cultivar. To compare scent patterns among the cultivars, E-nose sensor data was subjected to multivariate statistical analysis. Principal component analysis and discriminant function analysis of the volatile metabolic profile data indicated that chrysanthemum samples were clearly discriminated in a cultivar-dependent manner. These results show that different cultivars are characterized by distinct volatile profiles. Hierarchical cluster analysis showed that the 12 chrysanthemum cultivars were separated into 3 main groups according to the relationship of volatile profiles; however, chrysanthemum cultivars were not clustered according to the flower shape. We propose that these results could be used as the basis on which to improve the breeding of cut chrysanthemums based on volatile characteristics.

목차

등록된 정보가 없습니다.

참고문헌 (37)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0