메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
백승민 (울산대학교) 서동우 (울산대학교) 김윤정 (서울아산병원) 정진우 (동아대학교) 강형구 (한양대학교) 한갑수 (고려대학교) 김수진 (고려대학교) 이성우 (고려대학교) 김원영 (울산대학교)
저널정보
대한응급의학회 대한응급의학회지 대한응급의학회지 제31권 제5호
발행연도
2020.1
수록면
518 - 525 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Objective: Emergency department (ED) overcrowding is a global trend that has negative impacts on the clinical outcomes, especially on critically ill patients. Reducing the portion of these critical patients by limiting the ED length of stay (LOS) to less than 6 hours has become one of the most crucial targets of government policy. This could be valuable for resolving overcrowding, but the clinical impacts and applicability had not been evaluated. Methods: Consecutive emergency patients registered on the National Emergency Department Information System from January 2016 to December 2017 were analyzed. This study included critically ill patients who had a severe illness code, as defined by the government. The in-hospital mortality rate was compared by under or over six hours of ED LOS, in patients with a severe illness code, and intensive care unit (ICU) patients. Results: Among 18,217,034 patients, 436,219 patients had a severe illness code. The ED LOS in the less than six hours group showed a higher in-hospital mortality rate than that of more than six-hours group (7.1% vs. 6.5%, respectively). When the rule for the severe illness code to ICU admission was changed, the in-hospital mortality rate showed a remarkable difference between the under and over six-hour group (12.8% vs. 15.0%, respectively). The proportion of critically ill patients admitted within six hours increased when the standard for outlier removal was set higher than the current. Conclusion: A more suitable quality indicator or criterion for severe illness code is required for improving the clinical outcomes.

목차

등록된 정보가 없습니다.

참고문헌 (10)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0