메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
최성원 ((재)한국지방행정연구원) 김한준 (성균관대학교)
저널정보
한국폐기물자원순환학회 한국폐기물자원순환학회지 한국폐기물자원순환학회지 제37권 제1호
발행연도
2020.1
수록면
37 - 43 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In order to establish an efficient waste management plan, it is essential to forecast waste generation accurately, andsuch estimates become the basis for optimizing and developing the existing waste management infrastructure. The unitgeneration rate method used to estimate waste generation is widely used because it is convenient to apply. However,because it has various problems, methods for forecasting waste generation must be improved. Machine learning techniquesare being used to forecast prices and demand in various areas, such as economy and industrial engineering. This studyapplies those techniques for predicting waste generation and compares the results with those obtained using existingmethodologies. In this study, 80% (January 2013 to December 2016) of the data were used for training purposes, and20% (January 2017 to December 2017) were used for testing. The results of five hundred iterations show that the minimumvalue of 515.4 ton/day, the one-quartile value of 573.6 ton/day, and the median value of 590.4 ton/day in 2020, aresignificantly different from the results obtained using the unit generation rate method (547.7 ton/day). It was also shownthat future waste generation will continue to increase despite a decrease in population, and then it converges on 614.9ton/day in 2030. In other words, the model that was applied in this study is more suitable for short-term forecasts thanfor long-term forecasts. In addition, results of this study suggest that future increases in waste generation would be dueto changes in the population structure and the developing delivery service.

목차

등록된 정보가 없습니다.

참고문헌 (6)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0