메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
홍남기 (연세대학교) 박해정 (연세대학교) 이유미 (연세대학교)
저널정보
대한내분비학회 Endocrinology and Metabolism Endocrinology and Metabolism Vol.35 No.1
발행연도
2020.1
수록면
71 - 84 (14page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
Machine learning (ML) applications have received extensive attention in endocrinology research during the last decade. This reviewsummarizes the basic concepts of ML and certain research topics in endocrinology and metabolism where ML principles have beenactively deployed. Relevant studies are discussed to provide an overview of the methodology, main findings, and limitations of ML,with the goal of stimulating insights into future research directions. Clear, testable study hypotheses stem from unmet clinical needs,and the management of data quality (beyond a focus on quantity alone), open collaboration between clinical experts and ML engineers, the development of interpretable high-performance ML models beyond the black-box nature of some algorithms, and a creative environment are the core prerequisites for the foreseeable changes expected to be brought about by ML and artificial intelligence in the field of endocrinology and metabolism, with actual improvements in clinical practice beyond hype. Of note, endocrinologists will continue to play a central role in these developments as domain experts who can properly generate, refine, analyze, andinterpret data with a combination of clinical expertise and scientific rigor.

목차

등록된 정보가 없습니다.

참고문헌 (31)

참고문헌 신청

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0