메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Wenming Jiang (Huazhong University of Science and Technology) Haixiao Jiang (Huazhong University of Science and Technology) Guangyu Li (Huazhong University of Science and Technology) Feng Guan (Huazhong University of Science and Technology) Junwen Zhu (Huazhong University of Science and Technology) Zitian Fan (Huazhong University of Science and Technology)
저널정보
대한금속·재료학회 Metals and Materials International Metals and Materials International Vol.27 No.8
발행연도
2021.1
수록면
2,977 - 2,988 (12page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
In this work, microstructure, mechanical properties and fracture behavior of the magnesium/steel bimetal using compoundcasting assisted with hot-dip aluminizing were investigated, and the interface bonding mechanism of the magnesium/steelbimetal were also analyzed. The results indicate that the magnesium/steel bimetal obtained without hot-dip aluminizing hadlarger gaps through the whole interface without reaction layers between magnesium and steel, leading to a poor mechanicalbonding. After the steel substrate was hot-dip aluminized, an intermetallic layer along with an Al topcoat layer wereformed on the surface of the steel substrate, and the intermetallic layer was constituted by Fe2Al5,τ10-Al9Fe4Si3, FeAl3andτ6-Al4.5FeSi phases. In the case of the magnesium/steel bimetal obtained with hot-dip aluminizing, a compact and uniforminterface layer with an average thickness of about 17 μm that consisted of Fe2Al5,τ10-Al9Fe4Si3, FeAl3and Al12Mg17intermetalliccompounds was formed between the magnesium and the steel, obtaining a superior metallurgical bonding. The interfacelayer had much higher nano-hardnesses compared to the magnesium and steel matrixes, and its average nano-hardness wasup to 11.1 GPa, while there were respectively 1.1 and 4.2 GPa for the magnesium and steel matrixes. The shear strength ofthe magnesium/steel bimetal with hot-dip aluminizing reached to 23.3 MPa, which increased by 8.59 times than that of thecomposites without hot-dip aluminizing. The fracture of the magnesium/steel bimetal with hot-dip aluminizing representeda brittle fracture nature, initiating from the interface layer.

목차

등록된 정보가 없습니다.

참고문헌 (4)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0