메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색

논문 기본 정보

자료유형
학술저널
저자정보
Chan Hee Park (Korea Institute of Materials Science) Dojin Cha (Doosan Heavy Industries and Construction) Minsoo Kim (Doosan Heavy Industries and Construction) N. S. Reddy (Gyeongsang National University) Jong‑Taek Yeom (Korea Institute of Materials Science)
저널정보
대한금속·재료학회 Metals and Materials International Metals and Materials International Vol.25 No.3
발행연도
2019.1
수록면
768 - 778 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색

초록· 키워드

오류제보하기
An accurate processing map for a metal provides a means of attaining a desired microstructure and required shape throughthermo-mechanical processing. To construct such a map, the isothermal flow stress, σiso, is required. Conventionally, thenon-isothermal flow stress measured by experiment is corrected to σiso using whole-temperature-range linear interpolation(WRLI) or partial-temperature-range linear interpolation (PRLI). However, these approaches could incur significant errors ifthe non-isothermal flow stress exhibits a non-linear relationship with the temperature. In this study, an artificial neural network(ANN) model was applied to correct the non-isothermal flow stress in 10 wt% Cr steel, which exhibits a non-linear temperaturedependence within a target temperature range of 750–1250 °C. Processing maps were constructed using σiso corrected byapplying the WRLI, PRLI, and ANN approaches, respectively, and were then compared with the actual microstructures. TheWRLI approach produced the highest minimum error of σiso (17.2%) and over-predicted the shear-band formation. The PRLIapproach reasonably predicted the microstructural changes, but the minimum error for σiso (8.9%) was somewhat high. The ANNapproach not only realized the lowest minimum error of σiso (~ 0%), but also effectively predicted the microstructural changes.

목차

등록된 정보가 없습니다.

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0